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Overview
• Goal:

1. To characterize pre-launch software anomalies, using data 
from multiple spacecraft projects, by means of a defect-
analysis technology called Orthogonal Defect Classification 
(ODC).

2. To support transfer of ODC to NASA projects through 
applications and demonstrations. 

• Approach:
1. Analyze anomaly data using adaptation of Orthogonal 

Defect Classification (ODC) method

2. Adapt ODC for NASA use and apply to NASA projects
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Overview:  Status
• Previous work used ODC to analyze safety-

critical post-launch software anomalies on 7 
spacecraft.  

• FY’03 task extends ODC work to pre-launch
development and testing (Mars Exploration Rover 
testing, Deep Impact, contractor-developed 
software) and to support technology infusion

• Adapted ODC categories to spacecraft software 
at JPL:
– Activity:  what was taking place when anomaly 

occurred?
– Trigger:  what was the catalyst?
– Target:  what was fixed?
– Type:  what kind of fix was done?
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Results:  MER
• Collaborating with Mars Exploration Rover to experimentally 

extend ODC approach to pre-launch software problem/failure 
testing reports (525 to date)
– Adjusted ODC classifications to testing phases 
– Institutional defect database Access database of data of 

interest Excel spreadsheet with ODC categories Pivot 
tables with multiple views of data

– Frequency counts of Activity, Trigger, Target, Type, Trigger 
within Activity, Type within Target, etc.

– User-selectable representation of results support tracking 
trends and progress: 

– Graphical summaries 
– Comparisons of testing phases

– Provides rapid quantification of data
– Project provides feedback/queries on our monthly 

deliverables of results and on our draft reports/paper
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• Collaborating with Deep Impact to extend ODC approach 
into software developmental anomaly reports via ODC 
classification of development-phase SCRs (Software 
Change Reports) at Ball

– Classified initial set of 94 critical DI SCRs (with highest 
cause-corrective action/failure effect ratings)

– Feasibility check:   ODC classification of development-
stage software defects works well

– Initial delivery to DI of ODC pivot table results (for 
browsing), of user instructions, and of initial 
issues/concerns

– Project uses telecons/email to answer questions, 
suggest paths of interest to project
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• Gave invited presentation on ODC to JPL’s 
Software Quality Initiative task as candidate 
defect-analysis tool

• Worked with manager/developers of next-
generation JPL problem-reporting system to 
ensure that their web-based database will support  
projects’ choice of ODC

• Carmen presented ODC to JPL’s DII project
(Defense Information Infrastructure); they 
requested followup presentation (given); Carmen 
is working with DII as they train their users & 
transition ODC into their operations

• Wide distribution to projects of slide summarizing 
use of ODC on MER (T. Menzies suggestion)
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• Presented paper on the 4 mechanisms involved in 
requirements discovery during testing at ICSE 2003 (Int’l 
Conf on S/W Eng)

• Presented paper on patterns of defect data at SMC-IT 2003 
(Space Mission Challenges)

• Presented results at JPL/GSFC QMSW 2003 (Quality 
Mission Software Workshop)

• T. Menzies presented analysis of the ODC defect data at 
SEKE 2003 (Int’l Conf S/W Eng & Knowledge Eng)

• Paper on how operational anomalies drive requirements 
evolution appeared in Journal of Systems and Software, 
Feb. 2003

• Paper describing similar mechanisms in testing & ops 
anomalies accepted to RE 2003 (Int’l Requirements Eng 
Conf); selected as one of best experience papers & paper 
invited for IEEE Software submission
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ODC
• Testing reports give “crystal ball” into operations

– False-positive testing problem reports (where software 
behavior is correct but unexpected) provide insights into 
requirements confusions on the part of users

– If software behavior surprised testers, it may surprise 
operators

• Closing problem reports with “No-Fix-Needed” 
decision can waste opportunity to document /train/ 
change procedure
– Avoid potentially hazardous recurrence
– Important in long-lived systems with turnover, loss of 

knowledge
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Benefits
• Experience: Applied to 9 NASA projects 

– Development, testing, and operations phases
• Level of effort affordable 

– Uses existing fields in existing problem-reporting system)
– ODC ~ 4 minutes/defect vs. Root cause ~ 19 (Leszak & Perry 

2003)
• Uses metrics information to identify and focus on problem 

patterns
– Incorporates project results into multi-project baseline 

patterns to provide guidance to future projects
– Can answer current project’s questions regarding defects

• Flexible
– Visualization & browsing options 

• Provides quantitative foundation for process improvement
• Equips us with a methodology to continue to learn as projects 

and processes evolve
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Results
• 2 basic kinds of requirements discovery:

– Discovery of new (previously unrecognized) 
requirements or requirements knowledge

– Discovery of misunderstandings of (existing) 
requirements

• Reflected in ODC Target (what gets fixed) and 
ODC Type (nature of the fix):
1. Software change (new requirement allocated to 

software)
2. Procedural change (new requirement allocated 

to operational procedure)
3. Document change (requirements confusion 

addressed via improved documentation)
4. No change needed
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1. Incomplete requirements, resolved by change to 
software:

New software requirement became evident: 
initial state of a component’s state machine 
must wait for the associated motor’s initial 
move to complete

2. Unexpected requirements interaction, resolved  
by changes to operational procedures:

Software fault monitor issued redundant off 
commands from a particular state (correct but 
undesirable behavior).  Corrective action was 
to prevent redundant commands procedurally
by selecting limits that avoid that state in 
operations
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3. Requirements confusion, resolved by changes to 
documentation

Testing personnel incorrectly thought heaters 
would stay on as software transitioned from 
pre-separation to Entry/Descent mode; clarified 
in documentation.

4. Requirements confusion, resolved without change
Testers assumed commands issued when 
component was off would be rejected, but 
commands executed upon reboot.  No fix 
needed; behavior correct.


